How to Assess Stillbirths and Miscarriages

Deborah Krakow, MD
Professor and Chair
Departments of Obstetrics and Gynecology, Human Genetic and Orthopaedic Surgery
David Geffen School of Medicine

Objectives for management of miscarriage or stillborn

- Closure for the family
- Identify the conditions that have been best demonstrated to cause miscarriage or stillbirth
- Evaluate both adverse events using the most effective workup
- Accurately formulate an etiology for the event when possible
- Confer with experts to employ the best recommended hospital policies for management of stillbirth

Definitions

Spontaneous abortion
- Miscarriage
- <20 weeks gestation or <500g

Intrauterine fetal demise
- “Stillbirth”
- >20 weeks gestation or >350g—state dependent
- >500g is 50%ile for 20 weeks gestation
- Illinois: >20 weeks gestation
- “Delivery of a fetus showing no signs of life as indicated by the absence of breathing, heart beats, pulsation of the umbilical cord, or definite movements of voluntary muscles”
- Does not include terminations of pregnancy or IOL for previable PPROM

Causes of stillbirth

- >30 classification systems exist
- Important to distinguish between
 - Underlying cause of death
 - Mechanism of death
 - Risk factors

The National Institute of Child Health and Human Development
Classification of stillbirth

Classification of Stillbirth

- Eunice Kennedy Shriver workshop 2007
- National Institute of Child Health and Human Development
- "An optimal classification system would identify the pathophysiologic entity initiating the chain of events that irreversibly lead to death"

Criteria for “cause”

- Epidemiologic data demonstrate an excess of stillbirth associated with that condition
- Biologic plausibility that the condition causes stillbirth
- Either rarely seen in association with live births or, when seen in live births, results in a significant increase in neonatal death
- A dose-response relationship exists
 - The greater the “dose” of the condition, the greater the risk of fetal death
- Associated with evidence of fetal compromise
 - The stillbirth likely would not have occurred if that condition had not been present
Causes of stillbirth

- Severe maternal illness
- Placental infection that prevents oxygen/nutrients from crossing to the fetus
- Fetal infection that causes a lethal congenital deformity

Infections

- Associated with 10-20% of stillbirths in developed countries
- Higher association with preterm birth
- Sometimes difficult to prove causality

Mechanism of fetal death

- Severe maternal illness
- Placental infection that prevents oxygen/nutrients from crossing to the fetus
- Fetal infection that causes a lethal congenital deformity
- Fetal infection that damages a vital organ
- Precipitation of preterm labor, with intrapartum fetal death

Infections Should Be Proven

- Signs of infection in the fetus
- Evidence on autopsy of extensive organ involvement
- Positive fetal cultures
- Positive maternal cultures plus chorioamnionitis/funisitis

Causes of IUFD: Spirochetes

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal Disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Treponema pallidum}</td>
<td>Syphilis</td>
<td>Rare</td>
</tr>
<tr>
<td>\textit{Borrelia burgdorferi}</td>
<td>Lyme disease</td>
<td>Typhus</td>
</tr>
<tr>
<td>\textit{Borrelia recurrentis}</td>
<td>Relapsing fever</td>
<td>Tick borne, endemic in the Western US, rare cause of stillbirth</td>
</tr>
<tr>
<td>\textit{Borrelia duttonii}</td>
<td>Relapsing fever</td>
<td>Tick borne, sub-Saharan Africa, important cause of stillbirth</td>
</tr>
<tr>
<td>\textit{Leptospira interrogans}</td>
<td>Leptospirosis</td>
<td>Uncommon</td>
</tr>
</tbody>
</table>

Protozoa

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Trypanosoma brucei}</td>
<td>\textit{Trypanosomiasis}</td>
<td>Tsetse fly</td>
</tr>
<tr>
<td>\textit{Trypanosoma cruzi}</td>
<td>\textit{Chagas disease}</td>
<td>Kissing bug</td>
</tr>
<tr>
<td>\textit{Plasmodium falciparum}</td>
<td>Malaria</td>
<td>Common in endemic areas</td>
</tr>
<tr>
<td>\textit{Plasmodium vivax}</td>
<td>Malaria</td>
<td>Malaria</td>
</tr>
<tr>
<td>\textit{Toxoplasma gondii}</td>
<td>\textit{Toxoplasmosis}</td>
<td>Rare</td>
</tr>
</tbody>
</table>

Protozoa: Severe placental dysfunction

Causes of IUFD: Protozoa

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Trypanosoma brucei}</td>
<td>\textit{Trypanosomiasis}</td>
<td>Tsetse fly</td>
</tr>
<tr>
<td>\textit{Trypanosoma cruzi}</td>
<td>\textit{Chagas disease}</td>
<td>Kissing bug</td>
</tr>
<tr>
<td>\textit{Plasmodium falciparum}</td>
<td>Malaria</td>
<td>Common in endemic areas</td>
</tr>
<tr>
<td>\textit{Plasmodium vivax}</td>
<td>Malaria</td>
<td>Malaria</td>
</tr>
<tr>
<td>\textit{Toxoplasma gondii}</td>
<td>\textit{Toxoplasmosis}</td>
<td>Rare</td>
</tr>
</tbody>
</table>

Protozoa: Severe placental dysfunction

Causes of IUFD: Protozoa

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Trypanosoma brucei}</td>
<td>\textit{Trypanosomiasis}</td>
<td>Tsetse fly</td>
</tr>
<tr>
<td>\textit{Trypanosoma cruzi}</td>
<td>\textit{Chagas disease}</td>
<td>Kissing bug</td>
</tr>
<tr>
<td>\textit{Plasmodium falciparum}</td>
<td>Malaria</td>
<td>Common in endemic areas</td>
</tr>
<tr>
<td>\textit{Plasmodium vivax}</td>
<td>Malaria</td>
<td>Malaria</td>
</tr>
<tr>
<td>\textit{Toxoplasma gondii}</td>
<td>\textit{Toxoplasmosis}</td>
<td>Rare</td>
</tr>
</tbody>
</table>

Protozoa: Severe placental dysfunction
Viruses

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parvovirus B19</td>
<td>Erythema infectiosum</td>
<td>Likely the most common viral etiologic agent</td>
</tr>
<tr>
<td>Coxsackie A and B</td>
<td>Various</td>
<td>May be important</td>
</tr>
<tr>
<td>Echovirus</td>
<td>Various</td>
<td>Importance unknown</td>
</tr>
<tr>
<td>Enterovirus</td>
<td>Various</td>
<td>Importance unknown</td>
</tr>
<tr>
<td>Hepatitis E virus</td>
<td>Fulminant hepatic failure</td>
<td>Especially in endemic areas</td>
</tr>
<tr>
<td>Rubella</td>
<td>Poly</td>
<td>Historic cause</td>
</tr>
<tr>
<td>Varicella</td>
<td>Chickenpox</td>
<td>Rare cause</td>
</tr>
<tr>
<td>Rubella</td>
<td>German measles</td>
<td>Rare in developed countries</td>
</tr>
<tr>
<td>Human</td>
<td>Parvovirus</td>
<td>Rare in developed countries</td>
</tr>
<tr>
<td>Rubella</td>
<td>Measles</td>
<td>Rare in developed countries</td>
</tr>
<tr>
<td>Cytomegalovirus</td>
<td>Asymptomatic</td>
<td>Case reports</td>
</tr>
<tr>
<td>HIV</td>
<td>AIDS</td>
<td>Rare maternal disease</td>
</tr>
<tr>
<td>Influenza</td>
<td>Respiratory tract infection</td>
<td>Severe maternal disease</td>
</tr>
</tbody>
</table>

Bacteria

<table>
<thead>
<tr>
<th>Organism</th>
<th>Maternal disease</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Coli</td>
<td>Asymptomatic</td>
<td>Probably the most common organism associated with stillbirth</td>
</tr>
<tr>
<td>GBS</td>
<td>Asymptomatic</td>
<td>Common cause of stillbirth</td>
</tr>
<tr>
<td>Klebsiella</td>
<td>Asymptomatic</td>
<td>Common cause of stillbirth</td>
</tr>
<tr>
<td>Enterococcus</td>
<td>Asymptomatic</td>
<td>Common cause of stillbirth</td>
</tr>
<tr>
<td>Ureaplasma, mycoplasma</td>
<td>Asymptomatic</td>
<td>Common cause of stillbirth</td>
</tr>
<tr>
<td>Listeria monocytogenes</td>
<td>Listeriosis</td>
<td>Common cause of stillbirth</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>Pelvic infection</td>
<td>Suggested cause—case reports</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td>Pelvic infection</td>
<td>Suggested cause—case reports</td>
</tr>
<tr>
<td>Candida albi</td>
<td>Thrush, vaginitis</td>
<td>Confirmed in case reports</td>
</tr>
</tbody>
</table>

Maternal medical conditions

Causes of stillbirth—NICHHD workshop consensus

Hypertensive disorders

<table>
<thead>
<tr>
<th>Condition</th>
<th>Estimated stillbirth rate per 1000 births in patients with the condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pregnancies</td>
<td>6-7</td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>5-25</td>
</tr>
<tr>
<td>Superimposed preeclampsia</td>
<td>52</td>
</tr>
<tr>
<td>Gestational hypertension and mild preeclampsia</td>
<td>9</td>
</tr>
<tr>
<td>Severe preeclampsia</td>
<td>25</td>
</tr>
<tr>
<td>Eclampsia</td>
<td>18-48</td>
</tr>
<tr>
<td>HELLP syndrome</td>
<td>51</td>
</tr>
</tbody>
</table>

Diabetes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Estimated stillbirth rate per 1000 births in patients with the condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>All pregnancies</td>
<td>6-7</td>
</tr>
<tr>
<td>Gestational diabetes</td>
<td>5-10</td>
</tr>
<tr>
<td>Type 1 diabetes</td>
<td>0-10</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>25</td>
</tr>
</tbody>
</table>

Diabetes

Mechanism of fetal demise:
• Congenital abnormality
• Placental dysfunction
• Obstructed labor and intrapartum death
• Macrosomia
• Fetal hyperglycemia → fetal insulin production → excessive fetal growth → metabolic acidosis

To consider cause of death:
• Signs of intrapartum or intrapartum asphyxia
• LGA fetus
• SGA fetus
• Severe malformation
• Placenta demonstrates characteristic histologic findings
• Large edematous villi
• Increased prominence of cytotrophoblasts

Thyroid/renal disorders

Thyroid disorders
• Graves disease, where thyroid-stimulating hormone receptor antibody causes fetal toxicosis
• Untreated thyroid disorders

Renal disorders
• Linear relationship between maternal creatinine and risk of fetal demise

Systemic Lupus Erythematosus
• Stillbirth rates are higher in the presence of HTN, nephritis, or APL
• Circulating auto-antibodies, anti-Ro, anti-La
• Congenital heart block, hydrops

Maternal medical conditions

• Risk is a continuum

Thrombophilias

Antiphospholipid syndrome
• Inflammation, thrombosis, and infarction in the placenta
• Clear histopathological or clinical evidence of placental insufficiency

Thrombophilias should only be considered as the cause of stillbirth with:
• Evidence of placental insufficiency such as fetal growth restriction or infarction and
• Recurrent fetal loss

Alloimmunization Causes of stillbirth—NIHCHD workshop consensus

Red cell alloimmunization
• Anti-Rhesus D, anti-Rhesus C, anti-Kell
• Must have a positive indirect Coombs test
• Antibody titer more than 1:16 (or 1:8 for anti-Kell)
• Evidence of fetal anemia with hydrops
• Evidence of fetal extramedullary hematopoeisis

Platelet alloimmunization
• HPA-1a, HPA-5a, HPA-4
• Maternal antibodies against paternal and fetal platelet antigens
• Parental platelet incompatibility for the pertinent antigen
• Fetal thrombocytopenia
• Massive intracranial hemorrhage
Congenital malformations
Chromosomal abnormalities

Causes of stillbirth—NIHCD workshop consensus

Criteria
- Epidemiologic data demonstrating an excess of intrauterine mortality
- Seen rarely in liveborn neonates
- When seen in liveborn neonates, it frequently results in neonatal death
- Biologic plausibility that it can result in death

Congenital malformations
Chromosomal abnormalities

Incidence
- Cytogenetic abnormalities account for 6-13% of all stillbirths
- This may be higher because 40-50% attempted karyotypes fail to grow
- 23% monosomy X, 23% trisomy 21, 21% trisomy 18, 8% trisomy 13

Fetomaternal hemorrhage
Causes of stillbirth—NIHCD workshop consensus

- The cause 4% of all stillbirths
- Risk factors:
 - Placental abruption
 - Abdominal trauma
 - Multiple gestation
 - Abnormal fetal testing

Fetomaternal hemorrhage

- Risk of stillbirth depends on
 - Amount of hemorrhage
 - Acute/chronic
 - Gestational age
 - A threshold of 20 mL/kg of fetal bleeding is associated with increased risk of stillbirth
 - Autopsy confirmation of fetal anemia and hypoxia
Placental causes
Causes of stillbirth—NIHCHD workshop consensus

- Placenta previa, vasa previa, neoplasms
- Placental abruption has 8.9 relative risk of stillbirth
 - May be considered the cause of death if >30% of the placenta shows signs of abruption

Placental causes

- Any disease that causes an SGA placenta may result in stillbirth
 - <5% expected weight for gestational age
 - Preeclampsia, DM, HTN, renal, chronic infections
- Any disease that causes an LGA placenta may result in stillbirth
 - >95% expected weight for gestational age
 - Hydrops fetalis, DM, syphilis

Umbilical cord pathology
Causes of stillbirth—NIHCHD workshop consensus

- Account for 3.4-15% of stillbirths
- Velamentous insertion
 - If it leads to a vasa previa or bleeding during labor
- Umbilical cord prolapse
 - Associated with prematurity, malpresentation, multiparity, obstetric manipulation
- Umbilical cord occlusion
 - Cord prolapse, entanglement (mono-mono twins)
 - Torsion
 - Rupture, strictures, hematomas

Umbilical cord pathology

- Nuchal cord
 - Occur
 - Not associated with an increased risk of stillbirth in study of 14,000 deliveries
- True knot
 - Also common in live births
 - Grooving of the cord, constriction of the umbilical vessels, edema, congestion, thrombosis
 - Required to claim it is the etiology
 - Isolated finding of a nuchal cord or a true knot at the time of delivery is insufficient evidence that cord accident is the cause of stillbirth
 - Exclude other relevant causes of stillbirth
 - Find evidence of hypoxia and cord occlusion on postmortem examination

Complications of multifetal gestation

- Monochorionic placentation
 - Twin-twin transfusion syndrome occurs in 9% of mono- mono twins
 - Mortality can be 90% in untreated cases

Complications of multifetal gestation

- Mono- mono twins
 - Cord entanglement, preterm birth, growth impairment, malformations, genetic abnormalities, vascular anastomoses

Uterine complications

• Uterine rupture
 • Evidence of obstructed circulation
• Uterine abnormalities
 • There is an increased risk of uterine abnormalities in women with recurrent pregnancy loss/stillbirth
 • Possibly due to poorly vascularized uterine tissue or space constraints
 • Increased risk of PPROM, cervical insufficiency, preterm labor
 • Septate uterus has highest risk of stillbirth and placental abruption

• Evidence of obstructed circulation

Importance of a stillbirth evaluation

• Counseling for risk of recurrence
• Possible intervention to reduce recurrence risk
• Facilitate emotional closure and healing

Most stillbirths remain unexplained

• Incomplete evaluation
 • Lack of clinician awareness
 • Concerns of the family
 • Lack of single universally accepted classification scheme
 • Difficult to assign a definitive cause
• Unknown cause
 • Sometimes despite thorough evaluation

Overview

<table>
<thead>
<tr>
<th>Recommended studies</th>
<th>Sometimes helpful</th>
<th>Not generally useful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autopsy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placental pathology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karyotype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromosomal microarray</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kliehauer–Betke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirect Coombs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquired thrombophilia panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-B2-glycoprotein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxicology screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syphilis serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inherited thrombophilia panel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose screening</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMV, toxoplasmosis, other infectious</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bile acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonohysterogram</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routine TORCH titers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANA testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultures of placental membranes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time of demise

<table>
<thead>
<tr>
<th>Finding</th>
<th>Time of demise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown or red discoloration of the cord stump</td>
<td>6 hours ago</td>
</tr>
<tr>
<td>Desquamation of face, back, abdomen</td>
<td>12 hours ago</td>
</tr>
<tr>
<td>Desquamation >1/2 of the body or >2 body zones</td>
<td>24 hours ago</td>
</tr>
<tr>
<td>Skin color brown or tan</td>
<td>36 hours ago</td>
</tr>
<tr>
<td>Mummification: (reduced soft tissue, leathery skin, dark brown)</td>
<td>52 hours ago</td>
</tr>
</tbody>
</table>

Kumar: Robbins pathologic basis of disease, 8th edition, 2009
Autopsy

- New information that influences counseling in 26-51% of cases
- Valuable However, it is performed in <50% of cases
 - Clinician hesitation to recommend autopsy
 - Patient reservations

Alternatives to autopsy

- MRI
- Radiographs for skeletal dysplasias
- Partial autopsy
 - Head sparing autopsy (may miss CNS pathology)
- External examination by a trained pathologist
 - Can identify syndromes, congenital anomalies, timing of death, growth anomalies
 - Will likely miss fetal infections and internal anomalies
- External examination with selected biopsies
 - More likely to identify fetal infection

Alternatives to autopsy: MRI

Advantages
- Very good for CNS pathology
- Sometimes better than autopsy, because fetal brain has high water content and liquefies
- Fluid collections and effusions in the body

Disadvantages
- May miss cardiac anomalies, bowel anomalies
- Cannot diagnose infections or metabolic disease

Examination of the placenta

- The most valuable diagnostic test in most studies
 - Dutch study showed it to be valuable in 95% of cases
 - Provides additional information in 30% of cases

Examined of the placenta

- Weight in relation to norms for gestational age
- Evidence of abruption, infarction, thrombophilias
- Hemosiderin deposits = chronic abruption
 - Perivillous and marginal fibrin deposition
 - Decidual necrosis
 - Evidence of infarction

- Multiples: chorionicity, vascular anastomoses in multifetal gestations
- Cord: thrombosis, velamentous cord insertion, vasa previa
- Evidence of infections
 - More common in preterm stillbirth
 - Viral nucleic acid amplification
 - Bacterial cultures
Karyotype/Chromosomal microarray

• Abnormal fetal karyotype noted in 8-13% of all stillbirths and in >20% of those with morphologic abnormalities or IUGR
• Dutch study: 11.9% prevalence of a chromosomal abnormality in the 362 IUFDs who underwent karyotyping
 • 37% trisomy 21, 16% monosomy X, 4% trisomy 13
• Karyotype was valuable in 29% of cases
• FISH can also be performed

If live cells are not available: Microarray

• Screens the genome for copy number variations (CNPs)
 • BAC arrays provide overview of genome
 • SNP arrays provide more detailed coverage with probes on every 100-1000 base pairs
 • Detects deletions, duplications, aneuploidies, unbalanced translocations with a gain/loss of sequences
 • Good for small deletions or cryptic changes
 • Cytogenetics resolution is only 5-10Mb

Microarray versus karyotyping

• Reddy U.M et al, 2012: Prospective population-based study of 532 stillbirths over 2 years
• Patients with IUFD underwent:
 • Interview, chart abstraction, postpartum examination, placental pathology, karyotype analysis, and specimen collection
 • DNA analyzed with an SNP microarray with data aligned to Human Genome release 18

Microarray versus karyotyping

• Microarray analysis yielded a result in 87.4% stillbirths compared to 70.5% for karyotype
• 85.2% of these were benign, too small, or probably benign
• 2.6% were pathogenic, 6.9% were aneuploid
• Microarray detected CNV consistent with DiGeorge syndrome not detected by karyotype in 3 cases

Maternal Workup

Laboratories (Recommended)

• CBC
• Kliehauer-Betke
• Human parvovirus B-19 IgG and IgM
• Lupus anticoagulant, anticardiolipin antibodies
• Indirect Coombs
 • If not already done antepartum
• Toxicology screen

Kliehauer Betke

• Recommended to do before induction of labor
• However, given that only massive hemorrhage is likely to cause fetal death, can also be done up to 2-3 weeks after delivery
• In one study, FMH was a contributing factor in 10.6% of the total cohort
Antiphospholipid antibodies

- One fetal death satisfies criteria for testing
- Confirm with repeat testing in 6–12 weeks
- More likely positive if stillbirth was accompanied by IUGR or severe preeclampsia
- Two Dutch studies (750 fetal deaths in Korteweg et al. 2010, 1025 fetal deaths in Korteweg et al. 2012) showed that neither testing for acquired nor inherited thrombophilia is valuable
- Unless the patient has a family or personal history of thrombophilia

Laboratories (Sometimes useful)

- Syphilis
- TSH
- Inherited thrombophilia workup
 - Factor V Leiden, prothrombin gene mutation, antithrombin III, fasting homocysteine
- Glucose screening
- Sonohysterogram
 - Especially if loss associated with preterm labor, PPROM, cervical insufficiency, previable gestations, fetal malpresentation

Guided by maternal history and risk factors

Inherited thrombophilia

- Korteweg et al. 2010. Multicenter, prospective study. 750 singleton fetal deaths >=20 wks, excluding terminations
- Tested for vWF, antithrombin, protein C, total and free protein S, prothrombin gene mutation, factor V Leiden
- Cause of death classified by a panel
- “Except for vWF and paternal free protein S, acquired and thrombophilic defects were not more prevalent after fetal death.”
- However, many case-control studies show an association

Laboratories (unproven benefit)

- Toxoplasmosis, rubella, CMV, HSV, other infections
 - Viruses for which vaccines are prevalent are uncommon in developed countries
- However, if autopsy, pathology, or history is suggestive, take maternal/neonatal serology, special tissue stains, testing for nucleic acids
- ANA

Considerations

- Parents benefit from seeing/holding the infant
 - Warn them about how the baby will appear
- Use the term “baby”
- Encourage parents to name the infant
 - Knowing the sex is important
- Fetal loss can be devastation at any gestational age
- Different cultures grieve in different ways
Conclusions

• The cause of a stillbirth is the initial pathophysiologic entity that irreversibly led to fetal death
• Cause must be proven with evidence of fetal harm
• There are many benefits to finding a cause
• Encourage patients to allow an evaluation within the boundaries of their personal and cultural values

Conclusions

• Recommended laboratories are CBC, Kliehauer-Betke, parvovirus B-19 IgG and IgM, lupus anticoagulant, anticardiolipin antibodies, and toxicology screen
• Only perform other labs as indicated by maternal history
• Encourage patients to receive an autopsy
• Partial autopsy and MRI are alternatives
• Always send the placenta to pathology

Causes of miscarriage

• PUBMED search – “causes of miscarriage,” 24,817 articles from 1873 to 2017
• Original reference “On the causes of Unavoidable Haemorrhage during Miscarriage or Labour when the Placenta is Previa,” Duncan, JM. British Medical Journal 22;2(673):597-599, 1873

Causes of Miscarriage

• ANEUPLIOIDY
• Historic data suggests that 50% of first trimester miscarriages are due to aneuploidy
• Recent data is confirmatory (Qu et al., 2017)
 • 468 products of conception were evaluated by single nucleotide polymorphism (SNP array) or karyotype analysis
 • Mean gestational age at miscarriage 9.4 weeks (4 to 13 weeks)
 • Mean age of pregnant women was 19-47 years old

Causes of Miscarriages (Qu et al., 2017)

<table>
<thead>
<tr>
<th>Frequency of Anomaly (%)</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monosomy</td>
<td>1</td>
</tr>
<tr>
<td>Trisomy</td>
<td>1</td>
</tr>
<tr>
<td>Isolated sex</td>
<td>2</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>3</td>
</tr>
<tr>
<td>Balanced rearrangement</td>
<td>4</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>5</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>6</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>7</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>8</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>9</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>10</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>11</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>12</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>13</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>14</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>15</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>16</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>17</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>18</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>19</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>20</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>21</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>22</td>
</tr>
<tr>
<td>Balanced translocation</td>
<td>X</td>
</tr>
</tbody>
</table>
Causes of Miscarriages (Qu et al., 2017)

Maternal Age

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-20</td>
<td>25.0%</td>
</tr>
<tr>
<td>21-24</td>
<td>30.0%</td>
</tr>
<tr>
<td>25-29</td>
<td>45.0%</td>
</tr>
</tbody>
</table>

Chromosomal Anomaly/Gestational Age

<table>
<thead>
<tr>
<th>Gestational Age (weeks)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-9</td>
<td>59.7%</td>
</tr>
<tr>
<td>9-12</td>
<td>59.0%</td>
</tr>
<tr>
<td>12-15</td>
<td>64.0%</td>
</tr>
</tbody>
</table>

Uniparental Isodisomy

- Endometriosis – increases risk, particularly mild endometriosis associated with pro-inflammatory state (adjusted risk 1.97 (CI 1.41-2.75))
- Low dose aspirin and recurrent pregnancy loss
- Schaidman et al., 2014 – Low dose aspirin does not appear to be an effective treatment for patients with prior pregnancy losses
- IVS in recurrent pregnancy loss
- Christiansen et al., 2014 – in a small study IVS does not appear to be effective for women with secondary recurrent pregnancy loss
- Obesity and weight gain before pregnancy
- Gaylin et al., 2014: in data from the Nurses' Health Study showed that obesity and weight gain before pregnancy is associated with pregnancy loss
- IVF for recurrent pregnancy loss
- Murugappan et al., 2016: expectant management in unexplained recurrent pregnancy loss is as successful as IVF preimplantation genetic testing and had a lower median time to pregnancy
- Chronic endometriosis
- Bouak et al., 2016: Chronic endometritis is associated with recurrent pregnancy loss. Office hysteroscopy could aid in diagnosis by immunohistochemistry for syndecan 1.

Miscarriage and treatments

- Fligner CL, Dighe M. “Fetal and Perinatal Death Investigation: Redefining the Autopsy and the Role of Radiologic Imaging.” Ultrasound Clin 8, 2012 (S2-S17)
- Illinois Masonic Medical Center Perinatal Loss Policy: Policy 10.116.044