Fetal Growth Restriction: diagnosis, use of dopplers and management

Joanne Stone, MD MS
Director, Maternal Fetal Medicine
Professor, OBGYN Mount Sinai School of Medicine

Diagnosis

- EFW < 10th percentile
 - Ensure accurate dating
 - 1st trimester CRL best method of dating
 - Can’t account for fetus who is not small but isn’t achieving growth potential
- AC < 5th percentile

Constitutionally small fetus vs pathologic growth restriction?

- Constitutionally small:
 - Modest smallness (EFW 5th – 10th %ile)
 - Normal growth velocity
 - Normal dopplers and AVF
 - AC above lowest decile
 - Appropriate size in terms of maternal characteristics (ht/wt/ethnicity)

Use lower threshold?

- PORTO: 1100 pregnancies < 10th %ile
 - 2% of fetuses at 3rd – 10th %ile had adverse perinatal outcome
 - 6.2% of fetuses < 3rd %ile had adverse outcomes
 - All mortalities in this group
 - Combination of EFW < 3rd percentile + abnormal umbilical artery dopplers (PI > 95th % and AEDV/REDV) strong predictor of adverse outcome
 - 17% had IVH, PVL, HIE, NEC, BPD, sepsis or death

Etiology

<table>
<thead>
<tr>
<th>Etiology</th>
<th>5-20%: esp symmetric FGR < 20 weeks, esp Trisomy 13 and 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal genetic abn</td>
<td>Especially CHD, spina bifida</td>
</tr>
<tr>
<td>Fetal infection</td>
<td>1-10%. CMV and toxemia most common in developed countries,</td>
</tr>
<tr>
<td></td>
<td>Others: rhabdomyosarcoma, diabetes, etiology, HIV</td>
</tr>
<tr>
<td>Fetal structural anomaly</td>
<td>Especially CHD, spina bifida</td>
</tr>
<tr>
<td>Multiple gestation</td>
<td>Proportioned to % fetuses, type of placememt, increased in</td>
</tr>
<tr>
<td></td>
<td>pre eclampsia, maternal condition</td>
</tr>
<tr>
<td>Placental</td>
<td>SGA, IUGR, abnormally shaped placenta, confined placental</td>
</tr>
<tr>
<td></td>
<td>insertion</td>
</tr>
<tr>
<td>Cross cord/placental abn</td>
<td>Single umbilical artery, umbilical cord insertion, marginal</td>
</tr>
<tr>
<td></td>
<td>cord insertion, bilateral circumscription placentas, placental</td>
</tr>
<tr>
<td></td>
<td>hemangioma</td>
</tr>
<tr>
<td>Maternal genetic factors</td>
<td>Women who themselves had IUGR or had FGR fetus</td>
</tr>
<tr>
<td>Maternal medical/ob conditions</td>
<td>ECL, abruption, Chl, HTN, renal disease, DM, SLE, ANA,</td>
</tr>
<tr>
<td></td>
<td>cystic fibrosis, diabetes, chronic disease, scarring,</td>
</tr>
<tr>
<td></td>
<td>cyanotic heart disease, pulmonary disease, chronic</td>
</tr>
<tr>
<td></td>
<td>disease, vitamin, Omega-3 fatty acids, PAPP-A, HLA</td>
</tr>
<tr>
<td>Teratogens/environmental agents</td>
<td>Vitamins, valproic acid, folate acid antagonists, cigarettes,</td>
</tr>
<tr>
<td></td>
<td>alcohol</td>
</tr>
<tr>
<td>Assisted reproductive technology</td>
<td></td>
</tr>
<tr>
<td>Live pre-preg weight, poor nutrition</td>
<td></td>
</tr>
<tr>
<td>High altitude</td>
<td></td>
</tr>
<tr>
<td>Extreme of age</td>
<td></td>
</tr>
</tbody>
</table>

Work-up: anatomic survey

- 10% FGR have congenital anomalies
- 20–60% fetuses with anomalies will have FGR
 - Especially: omphalocele, CDH, skeletal dysplasias, CHD
Work up: Fetal genetic testing

- Early FGR, < 5th percentile, symmetrical
- Fetal structural anomalies
- Multiple soft markers
 - Increased nuchal fold, short femurs, echogenic bowel

Work up: Infectious causes

- Maternal history
- Fetal ultrasound findings
 - Echogenic bowel
 - Calcifications in brain, liver
 - Hydrops
- Maternal blood: CMV, toxo, rubella, varicella, malaria (in endemic areas/travel)
- Amniotic fluid for PCR

Work up: Thrombophilies

- Weak association for inherited thrombophilias
 - FVL, PGM, MTHFR C677T, Protein S deficiency?
- Consider w/u for acquired thrombophilia
 - Anticardiolipin antibodies, anti-beta2-glycoprotein, Lupus anticoagulant

FGR and uteroplacental insufficiency

- No structural defects
- Chromosomally normal
- Cornerstone of management
 - Serial US for growth
 - BPP
 - Impedance to blood flow in fetal arterial/venous vessels (Doppler velocimetry)

Sequence of fetal response to stress may vary by cause/progression

- Primary adaptive response
 - Decreased fetal growth rate
 - Circulatory redistribution
 - Fetal energy conservation
 - Decreased fetal movement
 - Decreased FHR variability
 - Falling cerebral flow impedance
 - Risking umbilical and aortic impedance
 - Increased efficiency placental exchange
 - Polycythemia – greater O2 carrying capacity

- Secondary adaptive response
 - Hypoxia > respiratory acidosis > metabolic acidosis
 - High impedance – AEDV in umbilical arteries
 - Decreasing AFV
 - Loss of fetal movement
 - Loss of FHR variability
 - Persistent late decelerations > agonal decelerations
 - Fetal death
Monitoring

- Serial US for growth every 2–4 weeks, depending on severity FGR and dopplers
- BPPs at least weekly depending on severity, Dopplers, afv, maternal status
- Dopplers

Few words about dopplers

- Reflect blood velocity
 - Presence and direction of flow
 - Volume of flow
 - Impedance to flow
- Doppler waveform analysis

Uterine Artery
Spiral Artery Remodeling

Summary: Uterine artery dopplers

- Abnormal 1st and 2nd trimester ut A dopplers: increased adverse outcomes (preeclampsia, FGR, perinatal mortality)
- Low risk women:
 - low predictive value
 - No available interventions
 - Routine screening not recommended
- High risk women: (h/o chronic HTN or preeclampsia, prior FGR or stillbirth) with singleton:
 - Abnormal testing – increased surveillance
 - Normal testing – less surveillance

UMBILICAL ARTERY
Factors affecting waveform

- Gestational age: EDV increases with advancing GA
- Fetal heart range: no affect at normal FHR
- Fetal breathing: causes dynamic variability: only measure during fetal apnea
- Cord sampling:
 - Indices higher at placental end
 - Use loop or fetal end of cord
 - Keep angle of insonation close to 0

Umbilical Artery

- Assesses resistance to blood perfusion of the fetoplacental unit
- Maternal/placental conditions that obliterate the small muscular arteries in the placental stem villi result in progressive decrease in end-diastolic flow
 - 30% are obliterated when Dopplers elevated
 - 70% are obliterated when reversed

UAD: How to perform

- Waveforms obtained near placental end reflect downstream resistance and show higher end-diastolic flow
 - Use free loop or at abdominal cord insertion
- Obtain measurement in the absence of breathing

AEDV and REDV

- Increase in perinatal mortality (17–28%)
- Increase NICU, IVH, prematurity
- REDV, GA, and BW independently associated with neurodevelopmental delay
- Clinical effectiveness
 - Cochrane review 18 trials, 10,225 women
 - 29% decline in perinatal mortality (RR 0.77, 95% CI 0.52–0.98) – NNT 203 high risk pregnancies to reduce 1 perinatal death
 - Low risk women – no benefit routine UA dopplers between 28–34 weeks

** Bricker et al 2000 *BJOG 1997**
Normally continuous forward flow throughout cardiac cycle

- Decreased, absent, or reversed flow in the a wave represents increased ventricular end-diastolic pressure from increase in RV afterload

DV: how to perform
- Identify the DV as it branches from the umbilical vein in transverse or sagittal section
- Waveform is biphasic with first peak ventricular systole, second peak during passive filling in ventricular diastole, followed by a nadir in late diastole (atrial contraction)

- Scan in the upper abdomen in a mid-sagittal longitudinal plane
- Scan to the left first, identifying the fetal stomach bubble
- In the same plane, activate color Doppler over the fetal liver
- Identify the umbilical vein and the ductus venosus
- Velocities in the DV may be higher than the umbilical vein, and gain may need to be adjusted
- Aliasing is a cue that the DV is being imaged.
- Sample volume size may be in the 2 mm range

Pathologic changes in venous flow in fetal growth restriction
- Increased umbilical artery resistance
- Impaired cardiac performance
- Right ventricle decompensation, TR
- Increase central venous pressure
- Reduced diastolic flow in DV and other large veins
- Vasodilation of DV decreases O2 to heart
- Increases retrograde transmission of atrial pressure
- DV resistance increases
- Loss/reversal a wave
- Impending acidemia/death

Middle Cerebral Artery
In the presence of fetal hypoxemia, central redistribution of blood flow causes increased blood flow to brain, heart and adrenals:
- “brain-sparing reflex”
- See increased end-diastolic velocity in MCA

MCA Doppler

MCA Doppler: normal waveform
Elevated End-diastolic flow

Cerebroplacental ratio (CPR):
- MCA pulsatility (or resistance) index / umbilical artery pulsatility (or resistance) index
- Low CPR – brain sparing, predicts adverse outcome
 - CPR < 1: serious adverse outcome 18% vs 2% if higher*
 - Most useful if umbilical artery PI > 95th %ile
 - Unclear what threshold to use

Which Dopplers should be done when IUGR suspected?
- Umbilical artery
 - Significantly reduces IOL, c-section and perinatal death without increasing the rate of unnecessary interventions
 - DV
 - Identifies fetuses at advanced stage of compromise
 - TRUFFLE trial: no immediate neonatal benefit from delaying delivery until DV showed absent or reversed flow but a possible small benefit in neurodevelopment outcomes at 2 years of age

Use in IUGR, continued
- MCA
 - Has been shown to identify a subset of IUGR fetuses at risk for c-section due to abnormal fetal FHR patterns and for neonatal acidosis.
 - No RCT
 - No specific interventions have been shown to improve outcomes based on abnormal findings

Umbilical artery is the preferred vessel to interrogate by Doppler to guide management in pregnancies complicated by suspected IUGR

Neonatal Mortality Rates
- Elevated UAD = 5.6%
- Absent or Reversed = 11.5%
- Venous abnormality = 38.8%

- DV
 - Identifies fetuses at advanced stage of compromise
 - TRUFFLE trial: no immediate neonatal benefit from delaying delivery until DV showed absent or reversed flow but a possible small benefit in neurodevelopment outcomes at 2 years of age

*Umbilical artery significantly reduces IOL, c-section and perinatal death without increasing the rate of unnecessary interventions

*TRUFFLE trial: no immediate neonatal benefit from delaying delivery until DV showed absent or reversed flow but a possible small benefit in neurodevelopment outcomes at 2 years of age

Umbilical artery is the preferred vessel to interrogate by Doppler to guide management in pregnancies complicated by suspected IUGR

Singletons with IUGR 36–41 weeks
- Randomized to IOL vs. expectant management
- N=650
- Primary outcome: composite adverse event
 - Death before discharge, 5min Apgar <7, pH<7.05, NICU admission
 - No difference between the groups
 - Similar adverse outcomes, C/D rates
 - More hyperbilirubinemia in IOL group
 - Similar outcomes at 2 years of age

Women with IUGR 24–36wks and clinical uncertainty regarding delivery
- N=1095
- Groups: immediate delivery or deferred delivery until was no longer unclear (ie testing worsened)
- Immediate group: Fewer stillbirths but more neonatal and infant deaths
- F/u at 13 years: no differences in cognition, language, motor or parent-assessed behavior scores
- Conclusion: similar deaths (whether stillbirth or neonatal/infant death) and similar long term outcomes

Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial
- Trend toward increased neurologic morbidity with immediate delivery
 - Most of the difference was in babies born <30wks
- Concluded doctors should be discouraged to deliver until cannot delay any longer
 - Especially <30 weeks

General management of FGR
- Determine if constitutionally small
 - Maternal history
- Aneuploidy screening/invasive testing
- US to look for signs of infection
 - If suspect: maternal serum ab titer or amnio for PCR
- Fetal growth US
- Dopplers as indicated
- Twice-weekly NSTs with AFV assessment OR once-weekly BPPs and umbilical artery dopplers
 - MCA and DV if AEDF/REDF
- Consider admission if AEDF/REDF and steroids

Management: algorithm for use of Doppler US in suspected FGR

Conel et al Obstet and Gynecol May 2014
Delivery

- Preterm
 - Abnormal antenatal surveillance
 - No growth over 2 weeks
 - If < 32 weeks consider Magnesium for neuroprotection
- Deliver at 37 weeks or more
 - EFW < 5th percentile
 - EFW < 10th percentile with oligo or worsening antenatal testing
- Elective at 39 weeks with no other findings
 - c/s for obstetric indications

Gestational age key factor

- > 28 weeks
 - abnormal umbilical artery dopplers not associated with lower developmental scores at 3 and 6 years of age*
- < 29 weeks
 - AEDF/REDF had increased risk of cognitive impairment at age 5–8 (restricted to males)**

Postnatal outcomes

- Gestational age key factor
 - > 28 weeks
 - abnormal umbilical artery dopplers not associated with lower developmental scores at 3 and 6 years of age*
 - < 29 weeks
 - AEDF/REDF had increased risk of cognitive impairment at age 5–8 (restricted to males)**

THANK YOU!