Using Ultrasound to Manage Twins

Lynn L. Simpson, MD
Chief, Division of Maternal Fetal Medicine
Columbia University Medical Center, New York

Learning Objectives

After this presentation, the learner will be able to discuss:

• Diagnosis and dating in twin pregnancies
• Sonographic characteristics that distinguish dichorionic from monochorionic twins
• Prenatal ultrasound screening in twins
• Complications unique to monochorionic twins
• Ultrasound surveillance recommendations for twins

Diagnosis and Dating of Twins

• Diagnosis best in the first trimester and dating optimal using crown-rump length
 - 20% of first trimester twin pregnancies result in singleton live births
 - “Vanishing twin” is associated with favorable prognosis of surviving twin if dichorionic
• If discrepancy in dates between the twins, date using the larger twin
 - Avoids missing diagnosis of IUGR

Importance of Pregnancy Dating

• Timing for screening and diagnostic testing
• Accurate interpretation of twin growth
• Scheduling of twin deliveries

Types of Twins

• All dizygotic twins are dichorionic
• All monochorionic twins are monozygotic
• Not all monozygotic twins are monochorionic

Determination of Chorionicity

• Optimal in first trimester
 - close to 100% accuracy
• Incorrect assignment in up to 10% of cases when chorionicity determined in second trimester

Lee et al, 2006
Blumerfeld et al, 2014
Determination of Chorionicity

- Gestational sacs
- Amniotic sacs
- Placenta number
- Intertwin membrane
- Gender

Intertwin Membrane

Importance of Chorionicity

- Aneuploidy
- Higher-Order Multiples
- Malformations
- Discordant Growth

Prenatal Diagnosis

Goals in twin gestations are the SAME as for singletons

- To identify fetal abnormalities that could change a couple’s decision to continue a pregnancy or alter obstetric care
- To identify fetuses that might benefit from fetal or early neonatal therapy
- To provide reassurance that twins are developing normally

First Trimester Risk Assessment

Trisomy 21 Screening in Twins:
Detection Rate for 5% False Positive Rate*
Importance of Nuchal Translucency in Twins

- Aneuploidy
- Structural malformations
- Twin-twin transfusion syndrome
 - PPV 30%

Twin Anatomy: Fetal Anomalies

Background risk for singletons
- 2% overall
Rate same per fetus for dizygotic twins
- 2% per fetus
- 4% overall
Rate 2-3 times higher for monozygotic twins
- 4-6% per fetus
- 8-12% overall

Congenital Heart Disease: Singletons vs Twins

- CHD is the leading malformation contributing to infant mortality and morbidity
- Background risk in singletons
 - Prevalence in mid-trimester: 10 per 1000 singletons
 - Prevalence at birth: 8 per 1000 live births
 - Major cardiac defect at birth: 3-4 per 1000 live births
- Rate higher for monozygotic twins
 - 2-3% per fetus
 - 6% overall

Indications for Fetal Echocardiography

Maternal
- Autoimmune antibodies
- Familial inherited disorders
- In vitro fertilization
- Metabolic diseases
- Teratogen exposure
 - Retinoids
 - Lithium

Fetal
- Abnormal cardiac screen
- First-degree relative with CHD
- Abnormal heart rate or rhythm
- Fetal chromosomal anomaly
- Extracardiac anomaly
- Hydrops
- Increased NT
- Monochorionic twins

Twins conceived by IVF at increased risk for CHD irrespective of chorionicity

Screening for Fetal Anomalies: Singletons vs Twins

- Imaging difficult with greater number of fetuses in variable positions
- Monochorionic twins may be complicated by other factors that impact imaging
 - Polyhydramnios-oligohydramnios sequence
 - Discordant twin growth / sIUGR
 - Monoamnionicity
- Overall, lower detection rate expected in twins compared to the 30-50% observed in singletons

TTTS: Acquired CHD

- Biventricular Hypertrophy: >50% of recipient twins
- Pulmonary Stenosis: 5% of recipient twins

Karantra et al, Heart 2008

AOGP practice guideline for the performance of fetal echocardiography. Ultrasound Med 2013
Bahtiyar et al, 2010; Reefhuis et al, 2009

Twins conceived by IVF at increased risk for CHD irrespective of chorionicity
Discordant Anomalies

- 1-2% of twin pregnancies face the dilemma of expectant management versus selective termination

DC twins
- 3% risk of procedure-related pregnancy loss with selective reduction via intracardiac KCl

MC twins
- 5% risk of procedure-related pregnancy loss with selective reduction via cord occlusive techniques
 - 3% neurologic morbidity in surviving co-twin
 - Must weigh against 20% risk of neurologic injury if spontaneous demise of abnormal MC twin

O'Donoghue et al., 2009

Importance of Placental Evaluation

- Placenta previa more common in twins
- Placental cord insertion more likely to be abnormal in twins
 - Marginal
 - Velamentous
 - Vasa previa

Ananth et al., 2003; ACOG 2011:204:145

Velamentous Placental Cord Insertion

- 10% of twins compared to 1% of singletons
- Marker for unequal placental sharing with discordant twin growth/sIUGR in MCDA twins and IUGR in dichorionic twins
- 2% of velamentous PCI associated with vasa previa
- Detection rate >90-95% with routine use of transvaginal ultrasound using color and pulsed Doppler in midtrimester
- Perinatal mortality of vasa previa
 - ~50% in undiagnosed cases
 - <5% in cases identified prenatally

Simpson et al., 2009; O'Sullivan et al., 2007

Importance of Cervical Length

- Identify patients at risk for preterm delivery
 - Mean gestational age for live born twins = 35.4 weeks
 - Potential clinical value for all twin gestations
 - Transvaginal approach proven to be optimal approach to assess cervix

Inamdar et al., 1997; Guzman et al., 2000

PCI: Ultrasound and Pathology

- Vasa Previa
- Velamentous PCI with intertwin anastomoses

Simpson et al., 2009; O'Sullivan et al., 2007

Meta-Analysis of 21 Twins Studies

- Transvaginal cervical length ≤20 mm at 20-24 wk
 - performed best as predictor of spontaneous preterm birth in asymtopic women with twins

<table>
<thead>
<tr>
<th>Spontaneous Preterm Birth</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive LR</th>
<th>Negative LR</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 weeks</td>
<td>35%</td>
<td>93%</td>
<td>5.2</td>
<td>0.69</td>
</tr>
<tr>
<td>32 weeks</td>
<td>39%</td>
<td>96%</td>
<td>10.1</td>
<td>0.64</td>
</tr>
<tr>
<td>34 weeks</td>
<td>29%</td>
<td>97%</td>
<td>9.0</td>
<td>0.74</td>
</tr>
</tbody>
</table>

- Cervical length >35 mm at 20-24 wk
 - high likelihood of delivery ≥34 wk, PPV >95%

Conde-Agudelo et al., 2010
Cervical Length

- Baseline assessment and serial assessments for patients at risk
 - All twin pregnancies
- Optimal cervical length threshold and frequency of follow-up assessments uncertain
 - ≤20 mm, two week intervals
- Management of patient with twins and a short cervix remains controversial
 - May be role for vaginal PG

Importance of Twin Growth

- Diagnosis of twin discordance
- Detection of intrauterine fetal growth restriction
- Identify cases for increased surveillance
- Twin growth impacts delivery planning

Twin Discordance

Discordance = \(\frac{\text{EFW of larger twin} - \text{EFW of smaller twin}}{\text{EFW of larger twin}} \)

- 20-25% discordance considered to be significant
- Disparate abdominal circumferences early sonographic sign
- Increased discordance associated with increased risk of fetal and perinatal death compared to concordant twins

Causes of Discordant Growth

- Structural anomalies
- Chromosomal abnormalities
- Genetic syndromes
- Discordant congenital infection
- Unfavorable placental implantation
- Unfavorable cord insertion site
- Placental abruption
- Complications of monochorionic placentaion

Potential Complications of Monochorionic Twins

- Monoamniotic twins
- Conjoined twins
- Twin reversed arterial perfusion (TRAP) sequence
- Twin-twin transfusion syndrome (TTTS)
- Unequal placental sharing (UPS)
 - Discordant twin growth
 - Selective intrauterine growth restriction (sIUGR)
- Twin anemia-polycythemia sequence (TAPS)
- Single twin demise in the second or third trimester

Monoamniotic Twins

- 1% of all monozygotic twins
- Results from cleavage at 8-13 days
Monoamniotic Twins

How do you make the diagnosis?
- Lack of separating membrane on serial exams
- Cord entanglement
 - Utilize color Doppler
 - Present in >80% of cases
- Single placenta with two cord insertions
 - Often in very close proximity
- Associated congenital anomalies
 - Present in 10% of cases

What are your management recommendations?
- Monthly growth scans
- Hospital admission at 24-28 weeks
- Serial surveillance
 - BPP
 - NST / continuous EFM
 - Doppler
- CD at 32-34 weeks

Contemporary management has increased survival from 50-60% to over 90%

Conjoined Twins

How do you make the diagnosis?
- Monoamniotic placentation
- Same relative positions of twins to each other in all views
- Direct opposition of the twins
- Extreme extension of the fetal spines
- Shared organs, vascular connections, associated anomalies

Management recommendations?

TRAP Sequence

What is twin reversed arterial perfusion sequence?
- Complication of monochorionic twins
 - Prevalence: 1:100 monochorionic twins
 - 75% diamniotic, 25% monoamniotic
- Aberrant arterioarterial anastomosis between twins
 - Acardiac twin lacks direct placental perfusion, dependent on retrograde flow from pump twin
 - Leads to abnormal development of acardiac twin

How it is diagnosed?
- Abnormal early development of one twin of MC pair
- Acardius acephalus most common
- Paradoxical arterial flow towards the acardiac twin on pulsed Doppler
TRAP Sequence

What do you recommend?

- Pump twin at risk for anomalies (5-10%), aneuploidy (10%), 2VC (65%), and hemodynamic compromise (30%)
- Ratio of acardiac/pump twin >0.7 increases risk for cardiac failure (30%), polyhydramnios (50%), and PTD (90%)

Estimate size of acardiac twin:
- EFW (g) = length x width x height x 0.52
- EFW (g) = (1.66 x length) + (1.21 x length^2)

Lee et al (NAFTNet), 2013; Jellin et al, 2010; Oliver et al, 2013; Simpson 2014

What do you recommend?

- Pump twin at risk for anomalies (5-10%), aneuploidy (10%), 2VC (65%), and hemodynamic compromise of pump twin
- Ratio of acardiac/pump twin >0.7 increases risk for cardiac failure (30%), polyhydramnios (50%), and PTD (90%)

Consider invasive cord occlusion therapy when . . .

- high acardiac-to-pump ratio (≥50%)
- rapid growth of acardiac twin
- hemodynamic compromise of pump twin

Variety of techniques available

- bipolar coagulation, radiofrequency ablation (RFA) most popular
- RFA targets intrafetal cord insertion within acardiac twin
- survival 80-90%, mean GA at delivery 34-36 weeks

Twin-Twin Transfusion Syndrome

- Complicates 8-10% of monochorionic diamniotic twin gestations
- Untreated TTTS developing before the third trimester has a perinatal mortality rate of >70%
 - 15-50% risk of handicap in survivors

What it is?

- Intertwin transfusion
 - Unequal sharing of blood
 - Changes in regional blood flow
 - Alterations in cardiac function
- Due to presence of vascular anastomoses in single placenta
 - 80-100% have intertwin anastomoses
 - Superficial bidirectional AA and VV
 - Deep unidirectional AV

Stage	**Ultrasound Assessment**	**Criteria**
I | Amniotic fluid | MVP <2 cm in donor sac; MVP >8 cm in recipient sac
II | Fetal bladder | Nonvisualization of fetal bladder in donor twin over 60 minutes of observation
III | Doppler studies | Absent or reversed umbilical arterial diastolic flow, reversed ductus venosus a-wave flow, pulsatile umbilical vein flow
IV | Fetal hydrops | Hydrops in one or both twins
V | Fetal cardiac activity | Fetal demise in one or both twins

Quintero et al, 1999; Simpson et al. ACOG 2011:204:145

What do you recommend?

- Pregnancy termination
 - Early, advanced stage TTTS
- Amnioreduction
 - Beyond 26 weeks
 - Declines fetoscopic laser therapy
- Laser photocoagulation of communicating vessels
 - 18-26 weeks
 - Advanced stage TTTS
- Delivery
 - Late presentation

Simpson et al, 2013; Aitken et al, 2014; Complicates 8-10% of monochorionic diamniotic twin gestations; Untreated TTTS developing before the third trimester has a perinatal mortality rate of >70% - 15-50% risk of handicap in survivors
Unequal Placental Sharing

What it is?
Pathologic discordance in territorial share of the common placenta in monochorionic twins

- Discordant twin growth
 - 20-25% discordance significant
- Selective IUGR
 - EFW ≤10th percentile of one twin

When should you be suspicious?

- Disparate CRL's and AC's are early sonographic signs of subsequent discordant growth and/or sIUGR in MC twins
- Velamentous PCI is an independent risk factor for UPS

Unequal Placental Sharing

• Abnormal umbilical artery waveforms of sIUGR twin may represent effects of
 - Placental resistance
 - Type and size of intertwin anastomoses
• Leads to substantial clinical differences in apparently similar cases

<table>
<thead>
<tr>
<th>Type</th>
<th>UA Dopplers</th>
<th>Placenta</th>
<th>Intertwin Flow Via Anastomoses</th>
<th>IUFD Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Positive DF</td>
<td>Small placental territory, many anastomoses</td>
<td>Compensates for small placental share</td>
<td>2-4% (unpredictable)</td>
</tr>
<tr>
<td>II</td>
<td>Persistent AREDF</td>
<td>Smaller placental territory, many anastomoses</td>
<td>Attenuates severity of sIUGR</td>
<td>0-30% (predictable)</td>
</tr>
<tr>
<td>III</td>
<td>Intermittent AREDF</td>
<td>Tiny placental territory, close PCIs, large AAAs</td>
<td>Enables survival of sIUGR twin but potential for acute, massive transfusion</td>
<td>10-20% (unpredictable)</td>
</tr>
</tbody>
</table>

Fetoscopic Laser Therapy

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Amnioreduction</th>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Resolution</td>
<td>Resolution</td>
</tr>
<tr>
<td>Stage I</td>
<td>Stage II</td>
<td>Stage III</td>
</tr>
<tr>
<td>Resolution</td>
<td>Resolution</td>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
<td>Resolution</td>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
<td>Resolution</td>
<td>Resolution</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normal Neurologic Outcome at 6 months and 6 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
<tr>
<td>Resolution</td>
</tr>
</tbody>
</table>

• In over 1000 published cases of laser performed for TTTS from six different centers, there were:
 - Two survivors: 50%
 - Single survivor: 30%
 - No survivors: 20%
• Normal neurologic development at 2 years of age: 80-90%

Simpson et al. ACOG 2011:S44:145

Gratacos et al, 2007
Gratacos et al, 2007
Gratacos et al, 2007
UPS with sIUGR

What are your management considerations?

- Spontaneous demise of MCDA twin carries 10% risk of death of co-twin, 20% risk of neurologic injury
 - Acute anemia due to massive blood transfer from surviving twin into dead twin/placenta
- Presence of placental anastomoses may be protective for sIUGR twin – compensatory flow from its co-twin
- Management strategy remains a challenge!
 - Influenced by severity of sIUGR, coexisting TTTS, gestational age, parental decisions, technical issues

TAPS

What it is?

- Twin anemia polycythemia sequence
- Chronic form of fetofetal transfusion

How is it diagnosed?

- Elevated PSV-MCA in one twin = anemia
- Decreased PSV-MCA in co-twin = polycythemia

Stage

<table>
<thead>
<tr>
<th>Stage</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| 1 | PSV-MCA >1.5 MoM in donor
PSV-MCA <1.0 MoM in recipient |
| 2 | PSV-MCA >1.7 MoM in donor
PSV-MCA <0.8 MoM in recipient |
| 3 | Stage 1 or 2 with cardiac compromise of donor |
| 4 | Hydrops of donor |
| 5 | Single or double IUFD |

TAPS

What are your management recommendations?

- Depends on gestational age, technical considerations, disease severity

Options

- Repeat laser: technical difficulties
- Fetal transfusion: not curative
- Cord coagulation
- Expectant management
- Early delivery

UPS versus TTTS

UPS with sIUGR

TTTS laser case
Single MC Twin Demise

Retrospective cohort analysis of 1000 consecutive twins ≥24 weeks

- 804 DCDA − 1.1% stillbirth
- 198 MCDA − 3.6% stillbirth

Analysis of 151 normal MCDA twins ≥24 weeks

All demises within 2 weeks of a normal scan

Overall risk of late fetal death in uncomplicated MCDA twins:

- 4.6% per pregnancy
- 3.3% per fetus

Single MC Twin Demise: Acquired CNS Injury

Analysis of 151 normal MCDA twins ≥24 weeks

All demises within 2 weeks of a normal scan

Overall risk of late fetal death in uncomplicated MCDA twins:

- 4.6% per pregnancy
- 3.3% per fetus

- For single death in MC pair, 5 times more likely to have neurologic morbidity

Use of Ultrasound in Twins: Summary

Timing	Examination
1st trimester | Determination of chorionicity
11-13 weeks | Measurement of crown rump lengths for dating
16-26 weeks | Measurement of nuchal translucency for screening
18-20 weeks | Screen for structural, placenta and PCI abnormalities
20-22 weeks | Baseline cervical length
24 weeks to delivery | Fetal echocardiography for IVF and MC twins
24 weeks to delivery | Serial determination of twin growth and discordance
24 weeks to delivery | Assessment of cervical length as indicated
24 weeks to delivery | Antenatal fetal testing as indicated
24 weeks to delivery | Fetal presentation prior to delivery
24 weeks to delivery | Delivery of second twin

Take Home Message

In order to provide high-quality obstetric care of twin pregnancies, need to

- Diagnose early
- Counsel extensively
- Follow closely
- Manage using best available up-to-date evidence

which requires extensive use of ultrasound