Skeletal Dysplasia Need-to-Knows

Helen Feltovich, MD MS
Maternal Fetal Medicine, Intermountain Healthcare
Medical Physics, University of Wisconsin-Madison

Fundamentals of Skeletal Dysplasias (Osteochondrodysplasias)

Bone Development

- Bones develop in 2 ways:
 - Direct - Membranous ossification
 - Mesenchymal cells \(\rightarrow \) osteoblasts \(\rightarrow \) bone
 - Flat bones of skull, pelvis, terminal aspects of clavicles
 - Indirect - Endochondral ossification
 - Mesenchymal cells \(\rightarrow \) chondrocytes \(\rightarrow \) cartilage \(\rightarrow \) bone
 - Most mammalian bones

Human Bones

- 206 bones
 - 126 appendicular
 - 74 axial
 - 6 cranial

Disorders of Bones

- Molecular basis established for ~350 of the ~450 known disorders
- Distinctions blurry (clinical, radiological & molecular overlap)
 - Mutations in the same gene cause different disorders
 - Mutations in different genes cause similar disorders
 - Ex: Atelosteogenesis (AO)
 - FLNB: AO type I, AO type III, Boomerang dysplasia, Larsen syndrome
 - SLC26A2: AO type II, A chondrogenesis IB, Diastrophic dysplasia
 - FBN1: Otopalatodigital dysplasia type II, can resemble AO type III

Disclosures

- None
Disorders of Bones

- Multiple phenotypes
 - Affects bone & cartilage (also muscle, tendons, ligaments)
 - Chest predicts lethality
 - Heart circumference/chest circumference > 50%
 - Thoracic circumference/abdominal circumference < 0.6

- Multiple classification schemes
 - Genotype, phenotype, lethal vs nonlethal, etc

- Multiple inheritance patterns
 - Autosomal recessive or dominant, X-linked recessive or dominant, Y-linked, mosaicism (somatic or gonadal), imprinting

Simple Steps

- Scan
 - Mineralization
 - Shape of bones
 - Size of bones
 - Alignment/deviation of joints
 - Too many or too few bones
 - Movement of limbs
 - Other (heart, kidneys, genitalia)

- Connect
 - Findings
 - Genes
 - Genetic bone reference [genetonline.org]
 - [OMIM](https://www.ncbi.nlm.nih.gov/omim)

Helpful Hints

- 1st trimester
 - CRL and NT
 - Think skeletal if less than expected CRL + increased nuchal

- 2nd/3rd trimester
 - How do bones look (size, shape, mineralization)?
 - How does fetus move (contractures)?
 - How do other structures look (face, genitalia, heart, kidneys)?
 - Think skeletal if any of the above are abnormal, or if midtrimester survey was normal but long bones lag in 3T

Quick Scan

- Head
 - Brachycephaly
 - Dolicocephaly
 - Macrocephaly
 - Plagiocephaly
 - Craniosynostosis
 - Cloverleaf skull
Face
- Bossing
- Micrognathia
- Other

Face
- Midface hypoplasia
- Cleft palate
- Cleft lip

Spine
- Abnormal vertebrae
 - Hemivertebra
 - Klippel-Feil
- Abnormal caudal eminence
- Abnormal mineralization
- Abnormal curvature
 - Scoliosis (lateral)
 - Kyphosis (outward)
 - Lordosis (inward)

Chest
- Bell-shaped
- Small/bent ribs

Limbs
- Bent, bowed
- Absent/hypoplastic radius (+/- thumb)
- Short
 - Mesomelia (short middle)
 - Rhizomelia (short proximal)
 - Micromelia (both)

Hands
- Sydactyly
 - Clubbed/Clenched
- Oligodactyly
 - Mitten/Trident
- Polydactyly
 - Hitchhiker thumb
Feet

- Syndactyly
- Clipped
- Oligodactyly
- Rocker bottom
- Polydactyly
- Sandal gap

Genes (very, very oversimplified)

Short-limb skeletal dysplasias
- **FGFR3** mutations cause short bones, brachydactyly (trident) hands, flat face, abnormal cranium (frontal bossing, cloverleaf skull)
 - **Achondroplasia.** Macrosephaly, frontal bossing, midface hypoplasia, trident hands.
 - **Hypochondroplasia.** Macrosephaly, short hands/feet, taller than achondroplasia.
 - **Thanatophoric dysplasia.** Narrow chest, short ribs, severely short bones, midface hypoplasia, trident hands, cloverleaf skull.

Short-Limb Skeletal Dysplasias

- **FNLB** mutations cause short (or absent) bones, abnormal mineralization, joint dislocations, flat face, hands, clubfeet
 - **Atelosteogenesis type I.** Encephalocele, synpolydactyly, omphalocele, poor ossification, small chest, short broad hands, clubfeet, micrognathia, cleft palate
 - **Atelosteogenesis type II.** Multiple joint dislocations, small chest, short broad hands, broad forehead, hypertelorism.
 - **Boomerang dysplasia.** Clubfeet, hypoplasic/absent ribs, spine, long bones, severely bent femurs (boomerang appearance), encephalocele, omphalocele.
 - **Larsen syndrome.** Clubfeet, extra bones in wrists, ankles, joint contractures, frontal bossing, midface hypoplasia, hypertelorism.

- **SLC26A2** mutations cause short limbs, normal size skull, joint contractures, spinal curvature abnormalities, cleft palate, clubfeet, hitchhiker thumb.
 - **Atelosteogenesis type III.** Severely short bones, small chest, cleft palate, clubfeet, hitchhiker thumb (similar to diastrophic dysplasia but more severe).
 - **Diastrophic dysplasia.** Hitchhiker thumbs, clubfeet, scoliosis, cleft palate.
 - **Achondrogenesis type II.** Severely short bones, small chest, brachydactly, clubfeet, umbilical or groin hernia.
Short-Limb Skeletal Dysplasias

- **SOX9** mutations cause midface hypoplasia, cleft palate, micrognathia, macrocephaly, clubfeet, dolicocephaly, hypoplastic scapulae, bowed bones, small chest, ambiguous genitalia
 - Campomelic dysplasia

- **COL2A1** mutations cause abnormal ossification, short bones, micrognathia, cleft palate
 - Achondrogenesis type II. Abnormal ossification in spine and pelvis, small chest, short ribs, micrognathia, cleft palate, hydrops.
 - Hypochondrogenesis. Abnormal ossification in spine and pelvis, micrognathia, hypertelorism, cleft palate
 - Spondyloepiphyseal dysplasia congenita. Similar features but less severe than hypochondrogenesis. (Newborns who survive reclassified as SED.)

- **COL1A1, COL1A2, P3H1, CRTAP** mutations cause weak bones that fracture easily (90% of OI is caused by COL1A1 or COL1A2 mutations) and weak connective tissues
 - Osteogenesis imperfecta. Several types (I-VIII), also called mild (Type I), severe deforming (Types II, IV, VII), perinatal lethal (Type II). Bones appear bent, bowed, broken, and short, and may be compressible (eg cranium)
 - Ehlers-Danlos Syndrome. Variable presentation. Mutations in not only COL1A1 or COL1A2 but also COL5A1, COL5A2, TNR, others

- **DYNC2H1** mutations cause short ribs, short long bones, polydactyly, and nearly anything else (renal, heart)
 - Short Rib Polydactyly Syndromes
 - SRPS I (Saldino-Noonan)
 - SRPS II (Majewski)
 - SRPS III (Verma-Naumoff)
 - SRPS IV (Beemer-Lamer)
 - Asphyxiating thoracic dystrophy (Jeune)

- **EVC, EVC2** mutations cause very short forearms, polydactyly, heart defects (50% of EVC caused by one of these mutations)
 - Ellis van Creveld (chondroectodermal dysplasia)

 - Other ciliopathies include Bardet-Biedel, Meckel-Gruber, etc

Ciliopathies

Cases

- Scan
 - Head:
 - Face:
 - Bones:
 - Chest
 - Hands:
 - Connect
<table>
<thead>
<tr>
<th>Two</th>
<th>Three</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Four</th>
<th>Five</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Six</th>
<th>Seven</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
<tr>
<td>Eight</td>
<td>Nine</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>• Scan</td>
<td>• Connect</td>
</tr>
<tr>
<td>• Head:</td>
<td>• Head:</td>
</tr>
<tr>
<td>• Face:</td>
<td>• Connect</td>
</tr>
<tr>
<td>• Chest:</td>
<td>• Head:</td>
</tr>
<tr>
<td>• Bones:</td>
<td>• Face:</td>
</tr>
<tr>
<td>• Kidneys:</td>
<td>• Chest:</td>
</tr>
</tbody>
</table>

Eight

Nine

• Surprise!

Thank you and Good Luck

![Ultrasound Image]